The Multi-User Detection in Code Division Multiple Access with Adpative Neuro-Fuzzy Inference System
نویسندگان
چکیده
In this paper, multi user detection in Code Division Multiple Access (CDMA) was realized with an adaptive neuro-fuzzy inference system (ANFIS) and the bit error rate (BER) performance was compared with the performances of the matched filter and a neural network receiver. Increment of the number of the active users and the receiving various user signals at the receiver input stage in different power levels in CDMA degrade BER performance of the receiver. The receiver that used ANFIS has a better bit error rate (BER) performance than the neural network receiver’s and the training process of the ANFIS is faster than the neural network’s.
منابع مشابه
A Novel Multi-user Detection Approach on Fluctuations of Autocorrelation Estimators in Non-Cooperative Communication
Recently, blind multi-user detection has become an important topic in code division multiple access (CDMA) systems. Direct-Sequence Spread Spectrum (DSSS) signals are well-known due to their low probability of detection, and secure communication. In this article, the problem of blind multi-user detection is studied in variable processing gain direct-sequence code division multiple access (VPG D...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملA Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success
The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led ...
متن کاملMulti-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study
Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...
متن کاملPrediction of Weld Strength in Resistance Spot Welded Samples by Adaptive Neuro-Fuzzy Inference System (ANFIS)
Resistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 22 شماره
صفحات -
تاریخ انتشار 2006